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Abstract

A blocked-off region procedure is implemented with the collapsed dimension method (CDM) to deal with radiative transport problems
in irregular geometries. Different test problems are validated for radiative and non-radiative equilibrium situations in participating or non-
participating media. Results are found to be satisfactory for all straight edged, inclined and curved boundaries. The blocked-off region
procedure based on Cartesian coordinate is found to be very convenient for a ray-tracing method like the CDM. The same ray tracing
algorithm for a rectangular enclosure could be effectively used for any kind of 2-D geometries. This significantly reduces the effort of
developing different ray-tracing algorithm for different geometries. In addition, it is an alternative than to write an algorithm in curvilinear
coordinate for irregular geometries which found to be complicated for a ray-tracing method like the CDM.
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1. Introduction coordinate. They found satisfactory results and discussed
the advantages and disadvantages found with this proce-
The popularity and usefulness of a method basically lies dure. Koo et al. [4] studied the effect of three different
in its implementation to real geometries. Almost all the real discrete ordinates methods applied to 2-D curved geome-
geometries are irregular and complex in nature and is thetries. In another paper, Koo et al. [5] discussed the first or-
reason for ever increasing trend of research in radiative heatder and second order interpolation schemes in context with
transfer for complicated geometries. It has also become athe irregular geometries. Monte Carlo method has been ap-
challenge for a particular method as far as its applicability plied by Parthasarathy et al. [6] for irregular geometries.
and accuracy with the irregular structures are concerned.  They considered a rhombus, a quadrilateral and an enclo-
Most of the papers dealing with the irregular geome- sure with curved and straight edged boundaries. They con-
tries for radiative transport are found in the 90's. Sanchez sidered absorbing, emitting and anisotropically scattering
and Smith [1] used the discrete ordinates method for sur- medium. Sakami and Charette [7] discussed a modified dis-
face radiative exchange between the faces of geometriescrete ordinates method based on triangular grids with a
with straight edged protrusions and obstructions. Chai et al. ney differencing scheme applicable to different complex
[2,3] simulated radiative transfer in irregular geometries us- geometries. Some works for 2-D irregular geometries has
ing the discrete ordinates methqd .[2] and the finite yol— been done by Meng et al. [8] using the discrete transfer
ume method [3]. They used a similar blocked-off region meihod with a finite element formulation. Some of the pa-
procedure to simulate the irregularities based on Cartesuempers are also devoted to 3-D irregular geometries. Malalasek-
era and James [9] implemented the discrete transfer method
" Tel. 0049 9131 8529 489: fax: 0049 9131 8529 503. to a 3-D L-shaped enclosure and a cylindrical enclosure
E-mail address: prabal_iitg@yahoo.com (P. Talukdar). based on a non-orthogonal, body-fitted coordinate system.
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Nomenclature
I iNtensity ..............oee..... Wwh2.sr1 A angular thickness of the discrete planar
M total number of intensities/rays angle .................................. rad
» phase function B extinction coefficient ................... T
q heat flux Wi—2 ] collapsing coefficient
S source function ........... ...l W2 ¢ emissivity 5L 4
o Stefan—Boltzmann constant ... .. V2K
T temperature ...... SERSEEEEEREEEE REEEEEEE K . optical thickness/depth
Ty temperature of the isothermal medium ... .. K o scattering albedo
Ti temperature of the hot boundary ........... K .
h P y Subscripts
Greek symbols ref reference
o planarangle ................ ... ... rad w boundary/wall

Malalasekera and Lockwood [10] also used the discrete different irregular geometries by dividing the domain into
transfer method in conjunction with a cell-blocking proce- inactive and active sub domains. Five different test problems
dure based on Cartesian coordinate to model combustion andare considered to check its accuracy and applicability. The
radiative heat transfer in complex three-dimensional tunnel CDM fully enjoys this new concept and presents satisfac-
geometry. tory results.

The CDM is one of the new methods emerging out
in radiative transfer problems with participating and non-
participating medium. The method is tested for different sit- 2 Apalysis
uations [11,12] and found to be satisfactory. It is accurate
and also economical for a 2-D problem [12]. The method is
also implemented for complex geometries [13] for limited
cases of non-radiative equilibrium situation. A separate ray-
tracing algorithm was developed for cylindrical, L-shaped
and quadrilateral geometries. Due to the complexities as-
sociated with the radiative equilibrium situation for these
type of geometries, it was not implemented for those sit-
uations. Even for non-radiative equilibrium, its ray tracing
was quite tedious depending on the shape of the geometries
The biggest disadvantage suffered by this method was the
non-availability of a single algorithm which can handle any
kind of geometries. The present blocked-off region approach
extends the applicability of the CDM and makes it more gen-
eral in radiative transport problems in participating medium.

The concept of blocked-off region for radiation was first
implemented by Chai and his co-workers for the finite vol-
ume method [3] and the discrete ordinates method [2]. They
validated the results for different test problems and discussed
the advantages and disadvantages of this approach.

The implementation of the blocked-off region approach
to the CDM is very straightforward. Although conceptually =’ "™
it is similar to the work of Chai et al. [2], as far as its im- directionse (0 <« < 27) [11,15] have to be calculated. In

plementation is concerned, it has a different approach which the CDM, the intensities are always traced from the bound-
is quite simple. A whole rectangular domain which can be 2i€S: If the boundary temperature is known, intensities at the

called as a nominal or simulated domain is simulated, out of Poundary can be calculated from the relation,

Radiative transfer in irregular geometries is treated with
a concept used in CFD [14]. The algorithm written for a reg-
ular grid can be modified to handle an irregularly shaped
calculation domain. This is done by making some of the
control volumes of the regular grid inactive or blocked-off
so that the remaining active control volumes represent the
desired irregular domain.

Two sample geometries are shown in Fig. 1. The real
domain of interest is calculated by considering the whole
rectangular domain mentioned as simulated domain. The
shaded portion is the inactive or blocked off region where
solutions are not required. In Fig. 1(b), a curved boundary is
shown which can also be handled by this concept with the
step size grid. This way any type of 2-D geometry can be
modelled from a rectangular domain. The main advantage
achieved with this concept is that the same ray tracing algo-
rithm can be applied to any kind of irregular structures with
a little expense of computational time.

The CDM [15] is a ray tracing method. To calculate flux
or incident radiation at a certain location, intensities from all

which one portion is considered to be inactive or blocked- 4 7
off and the remaining portion is the. actua_ll domain where Iy = ewo Ty + 1—ew / I~ () sina da 1)
solutions are sought. As soon as an intensity travels through 2 2

these inactive regions, its value becomes zero. The tedious =0

part of ray tracing is only once developed for a 2-D rec- On the right-hand side, the first term in the above equation
tangular geometry and can be successfully implemented tois the emitted part and the second term is the reflected part
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Inactive or blocked—off region (shaded portion) 1 st boundary Condition Of the intenSity
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2nd boundary condition of the intensity

Fig. 2. Ray tracing in a domain with a blocked-off/inactive region.

Real domain Simulated domain
(b) the intensities over complete span of{@ < 27) and can
Fig. 1. Sample irregular geometries. be eXpressed as
2
qg= / I (o) Sina do 4)
for a diffuse gray boundary. In this equatidfy, is the tem- w0
perature of the boundary arl'd is the incoming intensity tp This can be numerically integrated as
the boundary, part of which is reflected back to the medium.
Once boundary intensity is known, the intensities are traced M
step by step through the control volumes. The recursive rela-7 = ZC”I(“”) (5)
tion to calculate the intensity at a poin#- 1 from the known ":1.
intensity at point: is given by where in general

In+l =1 eXF(_Tn) + S[l - eXp(—”I)] (2) Cn =

Aay, Aoy,
cos<an + > )—cos(a,, - )‘ (6)

Here S is the source function known or evaluated from the In Eq. (5), M is the number of intensities spanned oveg 0
previous intensity distribution in an iterative processand a < 27 and in Eq. (6) Ax, is the discrete planar angle over

n represent respectively the optical thickness of the medium which nth intensity is assumed constant. In the present case,
and the collapsing coefficient for the CDM. The discus- Aaj, is same for all intensities.

sions about collapsing coefficient for the CDM can be found  In the proposed blocked-off region procedure for the
in [15]. In this work, the source function in a particular CDM, the domain is divided into two regions known as in-
control volume is different for different intensities and are active or blocked-off and the real. As soon as an intensity
calculated with the bilinear interpolation of the source func- Passes through these inactive regions its magnitude becomes

tion values at the four corners of a particular control volume. Z€ro. The intensity takes a new boundary condition at the
The source function in a particular directienis calcu-  interface of inactive and real domain. In Fig. 2, how a do-

lated as main is described for this problem is shown. This case is in
reference to Fig. 1(a) of T-shaped enclosure. The whole sim-
ulated domain is discretised into several control volumes and
/ I(a)p@ — a)dd 3) the control volumes which are inside the active regions are
designated as one (1) and otherwise they are zero (0). A typ-
ical intensity pathud is shown in this figure. The intensity
wherew, T and p are the scattering albedo, temperature originates from poinz with a known boundary condition.
of the medium and the phase function, respectively. In the As soon as the intensity passes through a pbijrit enters
present work, only isotropic scattering is considered and to a zero domain. As a result, its history gets terminated and
hence, the value of is taken to be 1. The angte defines it becomes zero till it reaches the pointAt point ¢, which
the direction of an intensity measured from normal to the is at the interface between the inactive and active regions, it
control surface. gets a second boundary condition. Calculations for the path
Once intensity distributions are known, the radiative heat ac is meaningless and only thel path contributes to the
flux at a particular location can be calculated by integrating flux calculations at poind.

_(1-weT* o

S et
2 +27'r

o'=0
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For every type of geometry, a domain file has to be cre- other problems deals with participating media. Both radia-
ated as shown in Fig. 2. By changing the value of a control tive and non-radiative equilibrium situations are considered.
volume from 1 to O, it can be made inactive. This domain Test Problems 1 and 2 are self validated and the others are
file has to be created as per the grid file for a particular prob- compared with the literature. For all problems considered,
lem. The other important additional task for this approach boundaries are assumed to be black although the work has
is to define the additional boundary conditions referred as no limitation to gray boundaries.
the second boundary condition in Fig. 2. Depending on the

shape of the geometry, a boundary condition file has to be Test Problem 1. The first problem considered is a problem
specified. with radiative equilibrium. The real geometry is extended
by 0.5d in the left side and then simulated by making the ex-
tended portion as an inactive region. This clearly validates
the applicability and accuracy of the blocked-off region. In

) Fig. 3(a), the description of the geometry is given. The left
Five test problems are solved to show the performance Offigure is the real geometry with left boundary at tempera-

the CDM with the blocked-off region procedure. Exceptthe a7 — 0.57h, bottom boundary af' = Ty and the other
last problem which deals with non-participating media, all two boundaries af’ = 0. The simulated geometry is shown

Inacfive/blocked—off region in the right side of Fig. 3(a) with the blocked-off region
r} shown by the shaded portion. Calculations are performed

3. Resultsand validation

= T _/g T for both the real geometry and the simulated geometry sep-
pe S arately and compared in Fig. 3(b) and (c). In both cases
J d (real and simulated), equal number of rays32) are con-
sidered. In Fig. 3(b), emissive power distributiotig/ Th)*
&X T=Th are shown along y-direction at/d = 0.5 (in reference to
— 4
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Fig. 3. (a) Sample geometry, (b) emissive power at = 0.5, (c) heat flux
at the bottom wall; radiative equilibrium. Fig. 4. (a) Sample geometry, (b) heat flux distributions at the boundary 1.
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the real geometry configuration). Three different extinction distributions at the boundary 1 is shown in Fig. 4(b). The ref-
coefficients viz.8 = 0.1, 1 and 5 are considered. Since, the erence temperatufBer is the medium temperatu® in the
medium is at radiative equilibrium and only isotropic scat- non-radiative equilibrium situation and temperatiisef the
tering is considered, results are independent of scatteringboundary 1, in the radiative equilibrium situation. Number of
albedo. Results of the simulated geometry exactly match rays considered is 32 for both real and simulated geometries.
with the real geometry results. In Fig. 3(c), heat fluxes In this case also, results of the blocked-off region procedure
q/(c Ty at the bottom boundary are compared and found match exactly with the real geometry results for both the ra-
exactly same. diative and the non-radiative equilibrium situations.

_ _ o Test Problem 3. The third problem is a quadrilateral geom-
Test Problem 2. The 2nd problem considered is a similar etry previously considered by other researchers [5,6,16]
one with a L-shaped blocked-off region (Fig. 4(a)). The ac- for validation of irregular geometries. The geometry is de-
tive area where solutions are soughtis the un-shaded portiongcriped in Fig. 5(a). A non-radiative equilibrium situation is
Calculations are performed once for the active region (the considered with an isothermal mediufy and cold bound-
real geometry) alone and then for the whole portion (active aries. Three different extinction coefficients are considered
and non-radiative equilibrium conditions are considered. For js simulated with the inclined planes approximated by step
the non-radiative equilibrium situation, medium is isother- sjze grids. A grid of 40« 30 in the X x Y directions and
mal (Tg) and all boundaries are cold (zero temperature). For 3 intensity directions are found to be sufficient to have ac-
the radiative equilibrium situation, boundary 1 is at some fi- rate results. The heat flyy (o ) results at the bottom
nite temperature’y) whereas other 3 boundaries are cold. poyndary is shown in Fig. 5(b). Results are compared with
Extinction coefficientf is taken as unity for both the Sit-  the exact results available in the literature [16]. An excellent
uations and the scattering albedois taken as 0 for the agreement has been found for this problem.
non-radiative equilibrium situation. The heat flgx(c T'%)

ref
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Fig. 5. (a) A quadrilateral geometry, (b) heat flux distributions at the bottom Fig. 6. (a) A curved geometry with step size grids, (b) heat flux distributions
wall; non-radiative equilibrium. at the top boundary; radiative equilibrium.
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Fig. 7. (a) Schematic of the problem, (b) heat flux distributions at the enclo-
sure wall; non-participating medium.

2.5

Test Problem 4. In the fourth problem, a geometry with a
curved boundary is simulated. This geometry was previously
solved by Chai and his co-workers [3,6,16] and Sakami
and Charette [7]. The schematic of the problem is shown
in Fig. 6(a). The curved boundary is simulated with a step
size grid as shown in the figure. The actual grid considered
is 30 x 50 (X — Y) although in the figure a coarse grid
is shown. This is a case of radiative equilibrium with the
curved boundary at some finite temperat@re= 7}, while

the other boundaries are col@ & 0). The extinction co-
efficient 8 of the medium is unity. The heat flux/(oTrj‘)
results at the top boundary is shown in Fig. 6(b). The results
of this work are found satisfactory as compared to the Monte
Carlo results (taken to be exact) found in [6]. Although, the
number of intensity directions considered here is quite high
(= 200) to reduce the ray effect at the cold top boundary,
slight discrepancies at the edges could not be eliminated.

Test Problem 5. The last problem considered is the prob-
lem investigated previously by Sanchez and Smith [1] and
then Chai et al. [3]. The schematic of the problem is shown

P. Talukdar / International Journal of Thermal Sciences 45 (2006) 103-109

in Fig. 7(a). It consists of a square enclosure with a central
blockage. The medium is non-participating. The left bound-
ary is set at 320 K and all the other boundaries including the
boundaries of the central blockage are set at 300 K. The heat
flux ¢ results at the boundary of the enclosure are presented
in Fig. 7(b). A total of 40x 40 control volumes and 32 in-
tensity directions are considered. The distancemeasured
from the lower left corner of the enclosure. The results com-
pare well with the solution of the RIM (radiosity/irradiation
method) of Sanchez and Smith [1].

4. Conclusionsand final remarks

This work shows that the CDM can be applied with the ir-
regular geometries. The same Cartesian coordinate based al-
gorithm can be applied to model curved and inclined bound-
aries and also can take care of blockages. This procedure is
very advantageous for a ray tracing method like the CDM
and shows quite accurate results. This procedure, of course,
has the disadvantage of unnecessary calculation in the inac-
tive region. In addition, a large number of control volumes
have to be considered to model curved and inclined bound-
aries and calculation of flux and incident radiation on those
boundaries are also difficult. But nevertheless, it shows an
alternative as far as the tedious ray-tracing algorithm con-
sidered with the irregular geometries and hence can be con-
sidered as an useful approach for the solution of radiative
transfer problems in irregular geometries with the CDM.
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